24,977 research outputs found

    Finite-horizon H∞ control for discrete time-varying systems with randomly occurring nonlinearities and fading measurements

    Get PDF
    This technical note deals with the H∞ control problem for a class of discrete time-varying nonlinear systems with both randomly occurring nonlinearities and fading measurements over a finite-horizon. The system measurements are transmitted through fading channels described by a modified stochastic Rice fading model. The purpose of the addressed problem is to design a set of time-varying controllers such that, in the presence of channel fading and randomly occurring nonlinearities, the H∞ performance is guaranteed over a given finite-horizon. The model transformation technique is first employed to simplify the addressed problem, and then the stochastic analysis in combination with the completing squares method are carried out to obtain necessary and sufficient conditions of an auxiliary index which is closely related to the finite-horizon H∞ performance. Moreover, the time-varying controller parameters are characterized via solving coupled backward recursive Riccati difference equations (RDEs). A simulation example is utilized to illustrate the usefulness of the proposed controller design scheme

    Character Formula for Infinite Dimensional Unitarizable Modules of the General Linear Superalgebra

    Get PDF
    The Fock space of m+pm+p bosonic and n+qn+q fermionic quantum oscillators forms a unitarizable module of the general linear superalgebra glm+pn+qgl_{m+p|n+q}. Its tensor powers decompose into direct sums of infinite dimensional irreducible highest weight glm+pn+qgl_{m+p|n+q}-modules. We obtain an explicit decomposition of any tensor power of this Fock space into irreducibles, and develop a character formula for the irreducible glm+pn+qgl_{m+p|n+q}-modules arising in this way.Comment: 25 Pages, LaTeX forma

    High efficiency coherent optical memory with warm rubidium vapour

    Get PDF
    By harnessing aspects of quantum mechanics, communication and information processing could be radically transformed. Promising forms of quantum information technology include optical quantum cryptographic systems and computing using photons for quantum logic operations. As with current information processing systems, some form of memory will be required. Quantum repeaters, which are required for long distance quantum key distribution, require optical memory as do deterministic logic gates for optical quantum computing. In this paper we present results from a coherent optical memory based on warm rubidium vapour and show 87% efficient recall of light pulses, the highest efficiency measured to date for any coherent optical memory. We also show storage recall of up to 20 pulses from our system. These results show that simple warm atomic vapour systems have clear potential as a platform for quantum memory

    An AC Stark Gradient Echo Memory in Cold Atoms

    Full text link
    The burgeoning fields of quantum computing and quantum key distribution have created a demand for a quantum memory. The gradient echo memory scheme is a quantum memory candidate for light storage that can boast efficiencies approaching unity, as well as the flexibility to work with either two or three level atoms. The key to this scheme is the frequency gradient that is placed across the memory. Currently the three level implementation uses a Zeeman gradient and warm atoms. In this paper we model a new gradient creation mechanism - the ac Stark effect - to provide an improvement in the flexibility of gradient creation and field switching times. We propose this scheme in concert with a move to cold atoms (~1 mK). These temperatures would increase the storage times possible, and the small ensemble volumes would enable large ac Stark shifts with reasonable laser power. We find that memory bandwidths on the order of MHz can be produced with experimentally achievable laser powers and trapping volumes, with high precision in gradient creation and switching times on the order of nanoseconds possible. By looking at the different decoherence mechanisms present in this system we determine that coherence times on the order of 10s of milliseconds are possible, as are delay-bandwidth products of approximately 50 and efficiencies over 90%

    I-45 Rational management of community-acquired pneumonia

    Get PDF
    corecore